首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   13篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2008年   3篇
  2006年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
3.
The developments in the techniques of NADH catalytic oxidation relevant for incorporation in amperometric biosensors with dehydrogenase enzymes are reviewed with special emphasis in the years following 1990. The review stresses the direct electro-catalytic methods of NAD+ recycling as opposed to enzymatic regeneration of the coenzyme. These developments are viewed and evaluated from a mechanistic perspective of recycling of NADH to enzymatically active NAD+, and from the point of view of development of technologically useful reagentless dehydrogenase biosensors. An effort is made to propose a method for the standardization of evaluation of new mediating and direct coenzyme recycling schemes. A perspective is given for the requirements that have to be met for successful biosensor development incorporating dehydrogenase enzymes that open the analytical possibilities to a number of new analytes. The intrinsic limitations of the system are finally discussed and a view of the future of the field is presented.  相似文献   
4.
The isomerization of nine asymmetric tris(dithiolenes) of tungsten and molybdenum, of the general formula (R(1)R(2)C(2)S(2))(3)M is studied with NMR methods. In the complexes investigated, R(1) = H, R(2) = p-CH(3)OPh, p-CH(3)Ph, or Ph, and M = W or Mo, or R(1) = H, R(2) = p-ClPh or p-BrPh, and M = W, or R(1) = Ph, R(2) = p-CH(3)OPh, and M = W, as shown in formula I. The complexes are proved to be trigonal prismatic in solution and stereochemically nonrigid at room temperature. An equilibrium favoring the trans isomer (formula III) is established, with the concentration of this isomer being three times that of the cis due to entropy reasons. The kinetics and mechanism of the isomerization is investigated and a scheme is proposed involving the rotation of only one ligand around an axis lying on the dithiolenic ring, passing from the metal to the center of the carbon-carbon bond. This mechanism satisfies energy criteria and is allowed by symmetry selection rules, as theoretical EHMO calculations indicate.  相似文献   
5.
Aptamers: molecular tools for analytical applications   总被引:3,自引:0,他引:3  
Aptamers are artificial nucleic acid ligands, specifically generated against certain targets, such as amino acids, drugs, proteins or other molecules. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). Thanks to their unique characteristics and chemical structure, aptamers offer themselves as ideal candidates for use in analytical devices and techniques. Recent progress in the aptamer selection and incorporation of aptamers into molecular beacon structures will ensure the application of aptamers for functional and quantitative proteomics and high-throughput screening for drug discovery, as well as in various analytical applications. The properties of aptamers as well as recent developments in improved, time-efficient methods for their selection and stabilization are outlined. The use of these powerful molecular tools for analysis and the advantages they offer over existing affinity biocomponents are discussed. Finally the evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.  相似文献   
6.
Coeliac disease is an inflammation of the small intestine, occurring in genetically susceptible individuals triggered by the ingestion of gluten. Human Leukocyte Antigens (HLA) DQ2 and DQ8 gene have been identified as key genetic factors in coeliac disease as they are presented in almost 100 % of the patients. These genes are encoded by the combination of certain alleles in the DQA and DQB region of chromosome 6. Specifically, DQA1*05:01 and DQB1*02:01 alleles for serologically defined leukocyte antigen DQ2 cis, DQA1*05:05 and DQB1*02:02 for DQ2 trans and DQA1*03:01 and DQB1*03:02 alleles for the DQ8. Specific identification of these alleles is a challenge due to the high number of alleles that have been identified so far: 46 in the DQA region and 160 in the DQB region (as of IMGT/HLA Database 10/2011 release). In the reported work, the development of a multiplex colorimetric assay for the low to medium HLA typing of the DQ2 and DQ8 genes is presented. The optimisation of probe design and assay conditions, performed by both surface plasmon resonance and enzyme-linked oligonucleotide assay, are reported. Finally, the performances of the developed typing platform were validated by the analysis of real patient samples and HLA typing, compared with those obtained using hospital based typing technology and an excellent correlation obtained.  相似文献   
7.
Coeliac disease is an inflammation of the small intestine triggered by gluten ingestion. We present a fluorescent genosensor, exploiting molecular-beacon-functionalized gold nanoparticles, for the identification of human leukocyte antigen (HLA) DQ2 gene, a key genetic factor in coeliac disease. Optimization of sensor performance was achieved by tuning the composition of the oligonucleotide monolayer immobilized on the gold nanoparticle and the molecular beacon design. Co-immobilization of the molecular beacon with a spacing oligonucleotide (thiolated ten-thymine oligonucleotide) in the presence of ten-adenine oligonucleotides resulted in a significant increase of the sensor response owing to improved spacing of the molecular beacons and extension of the distance from the nanoparticle surface, which renders them more available for recognition. Further increase in the response (approximately 40%) was shown to be achievable when the recognition sequence of the molecular beacon was incorporated in the stem. Improvement of the specificity of the molecular beacons was also achieved by the incorporation within their recognition sequence of a one-base mismatch. Finally, gold nanoparticles functionalized with two molecular beacons targeting the DQA1*05* and DQB1*02* alleles allowed the low-resolution typing of the DQ2 gene at the nanomolar level.  相似文献   
8.
Colloidal gold nanoparticles were conjugated with oligonucleotides to create biorecognition nanomodules. The efficiency of conjugation was determined by fluorescence using a FITC-labelled thiolated model probe and by enzyme-linked nanoparticle assay (ELINA) using a digoxigenin-labelled thiolated model probe. The thermal stability of the conjugation was determined by displacement and fluorescence measurement of the FITC probe. Functionality for hybridisation was determined by enzyme-linked oligonucleotide assay (ELONA). It was found that the equilibrium oligonucleotide surface coverage reached 37% of the total nanoparticle area. These results could be verified by ELINA. Under hybridisation conditions that allowed the detection of 4-point mutations on a target 19-mer sequence (1 h at 65 °C), it was found that the biofunctionalised nanomodules lost between 10 and 30% of the conjugated biorecognition molecules.  相似文献   
9.
In-vitro on-line glucose monitoring is described, based on microdialysis sampling and amperometric detection operated in a flow-injection system. Samples were injected into a two-electrode microcell containing an Ag/AgCl quasi-reference electrode and a glucose enzyme electrode as the working electrode, operated at + 0.15 Vvs. Ag/AgCl. The enzyme electrode is constructed by mixing the wired glucose oxidase into carbon paste. {Poly[1-vinylimidazole osmium(4,4-dimethylbipyridine)2Cl)]}+/2+ was used to wire the enzyme. The non-coated electrodes, cross-linked with poly(ethylene glycol) diglycidyl ether, responded linearly to glucose concentrations up to 60 mM, and were characterized by a sensitivity of 0.23 A mM–1 cm–2, when operated in flow injection mode and of 5.4 AmM –1 cm–2 in steady-state conditions. This sensitivity of the resulting enzyme electrode was 50% lower than that of similarly prepared but non-cross-linked electrodes. However, the cross-linked electrodes showed superior operational and storage stabilities, which were further improved by coating the electrodes with a negatively charged Eastman AQ film. An in-house designed microdialysis probe, equipped with a polysulphone cylindrical dialysis membrane, yielded a relative recovery of 50–60% at a perfusion rate of 2.5 l/min–1 in a well stirred glucose solution. The on-line set up effectively rejected common interferences such as ascorbic acid and 4-acetaminophen when present at their physiological concentrations.  相似文献   
10.
A novel method for the future development of label-free DNA sensors is proposed here. The approach is based on the displacement of a labelled suboptimum mutated oligonucleotide hybridised with the immobilised biotin-capture probe. The target fully complementary to the biotin-capture probe can displace the labelled oligonucleotide causing a subsequent decrease of the signal that verifies the presence of the target. The decrease of signal was demonstrated to be proportional to the target concentration. A study of the hybridisation of mutated and complementary labelled oligonucleotides with an immobilised biotin-capture probe was carried out. Different kinetic and thermodynamic behaviour was observed for heterogeneous hybridisation of biotin-capture probe with complementary or suboptimum oligonucleotides. The displacement method evaluated colourimetrically achieved the objective of decreasing the response time from 1 h for direct hybridisation of 19-mer oligonucleotides in the direct enzyme-linked oligonucleotide assay (ELONA) to 5 min in the case of displacement detection in the micromolar concentration range. Figure The detection system is based on the displacement of suboptimum HRP-labelled mutated oligonucleotide by the fully complementary target  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号